Designing Algorithms with Divide-and-Conquer

Lecture 06.03
by Marina Barsky

Main algorithm design strategies

\checkmark Exhaustive Computation. Generate every possible candidate solution and select an optimal solution.
\checkmark Greedy. Create next candidate solution one step at a time by using some greedy choice.

- Divide and Conquer. Divide the problem into non-overlapping subproblems of the same type, solve each subproblem with the same algorithm, and combine sub-solutions into a solution to the entire problem.
- Dynamic Programming. Start with the smallest subproblem and combine optimal solutions to smaller subproblems into optimal solution for larger subproblems, until the optimal solution for the entire problem is constructed
- Iterative Improvement. Perform multiple iterations of the algorithm, at each iteration moving closer to the optimal solution, until no further improvement is possible.

Big problem to be solved

Divide: Break into non-overlapping subproblems of the same type

Problem

not the same type

Problem

overlapping

Divide-and-conquer steps

1. Break into non-overlapping subproblems of the same type
2. Solve subproblems
3. Combine results \quad Most $\begin{aligned} & \text { difficult! }\end{aligned}$

Two examples:

- Counting inversions
- Closest pair

Counting inversions

Motivation

- Music site tries to match user song preferences with others.
- I rank n songs.
- Music site consults database to find people with similar tastes.
songs

	A	B	C	D	E	F
me	1	2	3	4	5	6

How similar are me and you?

| you 1 | 3 | 4 | 2 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

SImilarity of rankings

- Similarity metric:
number of inversions between two rankings.
- My rank: 1,2,3,4,5,6
- Your rank: 1,3,4,2,5,6
- for the same songs
songs

	A	B	C	D	E	F
me	1	2	3	4	5	6

For a perfect match you should have ranked D at 4, but you ranked it at 2

Definition

An inversion is a pair (A[i], A[j]) of array elements such that index $i<j$ and $A[i]>A[j]$

2 inversions in total:
$(3,2)$ and $(4,2)$

Problem: counting inversions

Input: an array A of length n with numbers $1,2, \ldots n$ in some order
Output: number of inversions: number of pairs $A[i], A[j]$ of array elements with $i<j$ and $A[i]>A[j]$

- If A is sorted - what is the number of inversions?
- What is the number of inversions if A is reversed?
- What is the number of inversions in $A=[1,3,5,2,4,6]$?

Example

- $A=[1,3,5,2,4,6]$

- Inversions:
$(3,2),(5,2),(5,4)$

What is the largest-possible number of inversions that a 6-element array can have?

Brute-force algorithm for counting inversions

Algorithm count_naive (array A of \boldsymbol{n} integers)
count:= 0
for i from 1 to $\mathrm{n}-1$:
for j from $\mathrm{i}+1$ to n :

$$
\text { if } A[j]<A[i]
$$

$$
\text { count:= count + } 1
$$

return count

Complexity?
Can we do better?

But how can we do better if total number of inversions is $O\left(\mathrm{n}^{2}\right)$???

Idea 1: Divide + Conquer

After dividing array into 2 halves, $\mathrm{n} / 2$ each:
For each (i, j) recursively determine if ($\mathrm{A}[\mathrm{i}], \mathrm{A}[\mathrm{j}]$) is an inversion

There are 3 possible cases (3 types of inversions):
Left inversions: if $i, j<=n / 2$ These two can be
Right inversions: if $i, j>n / 2$ computed recursively Split inversions : if $i<=n / 2$ and $j>n / 2$ But how to compute these?

$$
\begin{array}{lll}
5,3 & \frac{\mathrm{n}}{2} & 2,1
\end{array}
$$

Developing recursive algorithm

count (array A of length \mathbf{n})

if $n=1$
return 0
Else

$$
\begin{aligned}
& x=\text { count }\left(1^{\text {st }} \text { half of } A, n / 2\right) \\
& y=\text { count }\left(2^{\text {d d }} \text { half of } A, n / 2\right) \\
& z=\text { count_split_inv(A, } n)
\end{aligned}
$$

return $x+y+z$ to do that

If we manage to do CountSplitInv in $\mathrm{O}(\mathrm{n})$ time then Count will run in $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ - just like Merge Sort

Idea 2. What if we use merge from merge sort?

\square Have recursive calls both count inversions and sort
\square It turns out that the merge subroutine automatically recovers inversions!

Recursive Algorithm (in progress)

sort_count (array A of length n)

if $n=1$
return (A, O)
Else

B- sorted $1^{\text {s }}$ half of A	$(B, x)=$ sort_count $\left(1^{\text {st }}\right.$ half of $\left.A, n / 2\right)$
C-sorted $2^{\text {nd }}$ hal fof A	$(C, y)=\operatorname{sort_ count~}\left(2^{\text {nd }}\right.$ half of $\left.A, n / 2\right)$
	(D, z) $=$ count_split_inv (B, C)

return ($D, x+y+z$) We still do not know how to do that

If we manage to do count_split_inv in $\mathrm{O}(\mathrm{n})$ time then
sort_count will run in $\mathrm{O}(n \log n)$ - just like Merge Sort

merge subroutine: from Merge Sort

D = will contain sorted array
$B=1^{\text {st }}$ sorted subarray [1:n/2]
$C=2^{\text {nd }}$ sorted subarray [n/2:n]
$\mathrm{i}=1$
$j=1$

for k : $=1$ to n

$$
\begin{gathered}
\text { if } \mathrm{B}[\mathrm{i}]<\mathrm{C}[\mathrm{j}] \\
\mathrm{D}[\mathrm{k}]:=\mathrm{B}[\mathrm{i}] \\
\mathrm{i}:=\mathrm{i}+1 \\
\text { else if } \mathrm{C}[\mathrm{j}]<\mathrm{B}[\mathrm{i}] \\
\mathrm{D}[\mathrm{k}]:=\mathrm{C}[\mathrm{j}] \\
\mathrm{j}:=\mathrm{j}+1
\end{gathered}
$$

Stop and think

Suppose the input array A has no split inversions.

What is the relationship between the sorted subarrays B and C?
A. B has the smallest element of A, C has the second-smallest, B has the third- smallest, and so on.
A. All elements of B are less than all elements of C.
A. There is not enough information to answer this question.

Sample merge

1	3	5	2	4	6

Discovered 2 inversions:
$(3,2)$ and $(5,2)$

Sample merge

1	3	5	2	4	6

Discovered inversion
$(5,4)$

General claim

The split inversions involving an element y of the 2nd array C are precisely the numbers left in the $1^{\text {st }}$ array B when y is copied to the output D.

Proof:

Let x be an element of the $1^{\text {st }}$ array B.
\square If x copied to output D before y, then $x<y$
=> no inversions involving x and y
\square If y copied to output D before x, then $y<x$
$\Rightarrow x$ and all elements after it are (split) inversions.

Recursive Algorithm (revised)

```
sort_count_inv (array A of length n)
if \(n=1\)
    return ( \(\mathrm{A}, \mathrm{O}\) )
Else
    ( \(B, x\) ) = sort_count_inv( \(1^{\text {st }}\) half of \(A\) )
    ( \(C, y\) ) = sort_count_inv( \(2^{\text {nd }}\) half of \(A\) )
    ( \(\mathrm{D}, \mathrm{z}\) ) = merge_count_split_inv( \(B, C\) )
return ( \(D, x+y+z\) )
```

Split inversions are recovered during the merge of the sorted sub-arrays

Merge and count

- While merging the two sorted subarrays, keep running total of number of split inversions
- When element of $2^{\text {nd }}$ array C gets

copied to output D, increment total by number of elements remaining in $1^{\text {st }}$ array B

Runtime of merge_count_split_inv: $\mathrm{O}(\mathrm{n})+\mathrm{O}(\mathrm{n})=$
$\mathrm{O}(\mathrm{n})$ sort_count_inv runs in $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ time
just like Merge Sort

Closest pair

Motivation

The closest-pair is a subroutine for:

- Dynamic minimum spanning trees
- Straight skeletons and roof design
- Ray-intersection diagram
- Collision detection applications
- Hierarchical clustering
- Traveling salesman heuristics
- Greedy matching
- ...

Closest Pair Problem

- Input: n points in d dimensions
- Output: two points p and q whose mutual distance is smallest

A naive algorithm takes $O\left(d n^{2}\right)$ time.
(Number of dimensions d can be assumed a constant for a given problem)

Can we do better?

Closest pair in one dimension

Can be solved in O($n \log n$) via sorting, and then linear scanning.
Let's develop a recursive solution to find the closest pair

- If the points are sorted by their coordinate:
- Divide the points set S into 2 sets S_{1}, S_{2}, by median xcoordinate m such that $p<q$ for all $p \in S_{1}$ and $q \in S_{2}$
- Recursively compute closest pair $\left(p_{1}, p_{2}\right)$ in S_{1} and $\left(q_{1}, q_{2}\right)$ in S_{2}

median m

Closest pair in one dimension: combine step

- Let δ be the smallest pairwise distance found in 2 partitions $\delta=\min \left(\left|p_{2}-p_{1}\right|,\left|q_{2}-q_{1}\right|\right.$
- The closest pair is either $\left(p_{1}, p_{2}\right)$, or $\left(q_{1}, q_{2}\right)$, or some $\left(p_{3}, q_{3}\right)$ where $p_{3} \in S_{1}$ and $q_{3} \in S_{2}$
- Can we find $\left(p_{3}, q_{3}\right)$ in a constant time?

Closest pair in 1 dimension

median m

- The closest pair is either $\left(p_{1}, p_{2}\right)$, or $\left(q_{1}, q_{2}\right)$, or some $\left(p_{3}, q_{3}\right)$ where $p_{3} \in S_{1}$ and $q_{3} \in S_{2}$
- Key observation: If m is the dividing coordinate, then both p_{3} and q_{3} have to be within δ of m

Closest pair in 1 dimension

- Key observation: If m is the dividing coordinate, then both p_{3} and q_{3} have to be within δ of m
- How many such pairs exist?

Closest pair in 1 dimension

- Key observation: If m is the dividing coordinate, then both p_{3} and q_{3} have to be within δ of m
- How many points of S1 can lie in the interval ($m-\delta, m$]?
- So we need to check one pair only - constant time

Closest pair 1D: recursive

 algorithm
median m
closest_pair (S - set of sorted points $p_{\mathrm{i}} \ldots \boldsymbol{p}_{\mathrm{n}}, n>=2$)
if $|S|=2$
Here we only compute the shortest return $\delta=\left|p_{2}-p_{1}\right| \quad$ distance, but it is easy to modify to return 2 points which produced this distance

Divide S into S_{1} and S_{2} at $m=$ value[$n / 2$]
$\delta_{1}=$ closest_pair $\left(S_{1}\right)$
$\delta_{2}=$ closest_pair $\left(S_{2}\right)$
$\delta_{3}=$ closest_pair_across $\left(S_{1}, S_{2}, \min \left(\delta_{1}, \delta_{2}\right)\right)$ Constant time return $\delta=\min \left(\delta_{1}, \delta_{2}, \delta_{3}\right)$

Closest pair in 1 dimension: time complexity

closest_pair (S - set of sorted points $p_{i} \ldots p_{n}, n>=2$)

$$
\begin{aligned}
& \text { if }|S|=2 \\
& \quad \text { return } \delta=\left|p_{2}-p_{1}\right|
\end{aligned}
$$

Divide S into S_{1} and S_{2} at $m=$ value[$\mathrm{n} / 2$]
$\delta_{1}=$ closest_pair $\left(S_{1}\right)$
$\delta_{2}=$ closest_pair $\left(S_{2}\right)$
$\delta_{3}=$ closest_pair_across $\left(S_{1}, S_{2}, \min \left(\delta_{1}, \delta_{2}\right)\right) \quad$ Constant time return $\delta=\min \left(\delta_{1}, \delta_{2}, \delta_{3}\right)$

$$
\begin{aligned}
& \mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{O}(1) \\
& \text { Which solves into } \mathrm{O}(\mathrm{n}) \quad \text { We will learn why later }
\end{aligned}
$$

Together with sorting: $O(n \log n)$

Closest pair in 2 dimensions

The previous algorithm does not generalize to higher dimensions, or does it?

median m

2D closest pair: divide

- Taking sorting as a free $O(n \log n)$ invariant, we sort all points in S by x coordinate
- Partition S into S_{1}, S_{2} by vertical line l defined by median x coordinate in S

2D closest pair: conquer

- Recursively compute closest pair distances δ_{1} and δ_{2} in S_{1} and S_{2}
- Set $\delta=\min \left(\delta_{1}, \delta_{2}\right)$

2D closest pair: combine

- Closest pair distances in S_{1} and S_{2} are δ_{1} and δ_{2}.

$$
\delta=\min \left(\delta_{1}, \delta_{2}\right)
$$

- Now need to combine: compute the closest pair across dividing line l
- In each candidate pair (p, q), where $p \in S_{1}$ and $q \in S_{2}$, the only candidate points p, q must both lie within δ of l.

2D closest pair combine: complications

- At this point, complications arise, which were not present in 1D
- It is entirely possible that all $n / 2$ points of $S_{1}\left(\right.$ and $\left.S_{2}\right)$ lie within δ of l
- Naïvely, this would require $\mathrm{n}^{2} / 4$ comparisons

Combining split points

- Consider a point $p \in \mathrm{~S}_{1}$.
- All points of S_{2} within distance δ of p must lie in a $\delta \times 2 \delta$ rectangle R
- How many points can be inside R if we know that each pair is at least δ apart?
- In 2D, this number is at most 6!

So we only need to perform ($n / 2$)*6 distance calculations during the combine step!
We do not have the $O(n \log n)$ algorithm yet. Why?

Combine in linear time

- In order to determine at most 6 potential mates of p, project p and all points of S_{2} into y axis
- Pick out points whose projection is within δ of p : at most 6
- If we pre-sort S_{1} and S_{2} by the y coordinate
- Then we can do our check for all $p \in S_{1}$, by walking sorted lists $S_{1 y}$ and $S_{2 y}$, in total $O(n)$ time

The entire solution then runs in $O(n \log n)$

